Dim1p is required for efficient splicing and export of mRNA encoding lid1p, a component of the fission yeast anaphase-promoting complex.
نویسندگان
چکیده
Schizosaccharomyces pombe Dim1p is required for maintaining the steady-state level of the anaphase-promoting complex or cyclosome (APC/C) component Lid1p and thus for maintaining the steady-state level and activity of the APC/C. To gain further insight into Dim1p function, we have investigated the mechanism whereby Dim1p influences Lid1p levels. We show that S. pombe cells lacking Dim1p or Saccharomyces cerevisiae cells lacking its ortholog, Dib1p, are defective in generalized pre-mRNA splicing in vivo, a result consistent with the identification of Dim1p as a component of the purified yeast U4/U6.U5 tri-snRNP complex. Moreover, we find that Dim1p is part of a complex with the splicing factor Prp1p. However, although Dim1p is required for efficient splicing of lid1(+) pre-mRNA, circumventing the necessity for this particular function of Dim1p is insufficient for restoring normal Lid1p levels. Finally, we provide evidence that Dim1p also participates in the nuclear export of lid1(+) mRNA and that it is likely the combined loss of both of these two Dim1p functions which compromises Lid1p levels in the absence of proper Dim1p function. These data indicate that a mechanism acting at the level of mRNA impacts the functioning of the APC/C, a critical complex in controlling mitotic progression.
منابع مشابه
SUS1 introns are required for efficient mRNA nuclear export in yeast
Efficient coupling between mRNA synthesis and export is essential for gene expression. Sus1/ENY2, a component of the SAGA and TREX-2 complexes, is involved in both transcription and mRNA export. While most yeast genes lack introns, we previously reported that yeast SUS1 bears two. Here we show that this feature is evolutionarily conserved and critical for Sus1 function. We determine that while ...
متن کاملKinase Activity of Fission Yeast Mph1 Is Required for Mad2 and Mad3 to Stably Bind the Anaphase Promoting Complex
Defects in chromosome segregation result in aneuploidy, which can lead to disease or cell death [1, 2]. The spindle checkpoint delays anaphase onset until all chromosomes are attached to spindle microtubules in a bipolar fashion [3, 4]. Mad2 is a key checkpoint component that undergoes conformational activation, catalyzed by a Mad1-Mad2 template enriched at unattached kinetochores [5]. Mad2 and...
متن کاملInterconnections Between RNA-Processing Pathways Revealed by a Sequencing-Based Genetic Screen for Pre-mRNA Splicing Mutants in Fission Yeast
Pre-mRNA splicing is an essential component of eukaryotic gene expression and is highly conserved from unicellular yeasts to humans. Here, we present the development and implementation of a sequencing-based reverse genetic screen designed to identify nonessential genes that impact pre-mRNA splicing in the fission yeast Schizosaccharomyces pombe, an organism that shares many of the complex featu...
متن کاملThe prp1+ gene required for pre-mRNA splicing in Schizosaccharomyces pombe encodes a protein that contains TPR motifs and is similar to Prp6p of budding yeast.
The prp (pre-mRNA processing) mutants of the fission yeast Schizosaccharomyces pombe have a defect in pre-mRNA splicing and accumulate mRNA precursors at a restrictive temperature. One of the prp mutants, prp1-4, also has a defect in poly(A)+ RNA transport. The prp1+ gene encodes a protein of 906 amino acid residues that contains 19 repeats of 34 amino acids termed tetratrico peptide repeat (TP...
متن کاملInhibition of splicing and nuclear retention of pre-mRNA by spliceostatin A in fission yeast.
Nuclear retention of pre-mRNAs is tightly regulated by several security mechanisms that prevent pre-mRNA export into the cytoplasm. Recently, spliceostatin A, a methylated derivative of a potent antitumor microbial metabolite FR901464, was found to cause pre-mRNA accumulation and translation in mammalian cells. Here we report that spliceostatin A also inhibits splicing and nuclear retention of ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Eukaryotic cell
دوره 4 3 شماره
صفحات -
تاریخ انتشار 2005